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a b s t r a c t 

Utilizing both visible and infrared (IR) images in various deep learning based computer vision tasks has 

been a recent trend. Consequently, datasets having both visible and IR image pairs are desired in many 

applications. However, while large image datasets taken at the visible spectrum can be found in many 

domains, large IR-based datasets are not easily available in many domains. The lack of IR counterparts of 

the available visible image datasets limits existing deep algorithms to perform on IR images effectively. 

In this paper, to overcome with that challenge, we introduce a generative adversarial network (GAN) 

based solution and generate the IR equivalent of a given visible image by training our deep network 

to learn the relation between visible and IR modalities. In our proposed GAN architecture (InfraGAN), 

we introduce using structural similarity as an additional loss function. Furthermore, in our discriminator, 

we do not only consider the entire image being fake or real but also each pixel being fake or real. We 

evaluate our comparative results on three different datasets and report the state of the art results over 

five metrics when compared to Pix2Pix and ThermalGAN architectures from the literature. We report up 

to +16% better performance in Structural Similarity Index Measure (SSIM) over Pix2Pix and +8% better 

performance over ThermalGAN for VEDAI dataset. Further gains on different metrics and on different 

datasets are also reported in our experiments section. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent developments in sensor types and the increasing de- 

and in autonomous systems, (as in [1–3] ), have moved many 

esearchers’ attention to the data fusion algorithms where using 

ore than one modality is desired. Sample areas and works can 

e found in [4–7] . Many autonomous systems use images coming 

rom both visible and infrared (IR) spectrum. Since both IR image 

typically containing information from the thermal spectrum) and 

isible image (containing information from the visible spectrum) 

ummarize different properties of a scene, acquired IR and visible 

mages of the same scene would look similar but not the same. 

 typical example is text images. For example, reading the text 

nformation on a posted sign might be an easy task in a visible 

mage, however, that can easily become a troublesome task if 

he reading is done in the IR spectrum, since the text might not 

ppear on the IR image. 

Infrared images have primary importance for various vision 

asks such as object detection and object tracking especially in the 
∗ Corresponding author. 
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ight mode. Infrared cameras have the ability to distinguish an ob- 

ect in difficult lighting conditions such as in night or in cloudy 

eather. On the other hand, because of perceiving the thermal 

emperature level, IR images can also help to differentiate objects 

ased on their body temperature, i.e., they provide extra informa- 

ion in addition to the visible spectrum. As a result, IR images can 

elp to improve the understanding of the surroundings and mak- 

ng miscellaneous vision tasks such as detection, tracking, and self- 

riving more feasible. 

Making a deep fusion algorithm to work better than the ex- 

sting single-modality based algorithms, usually a large data set 

hich is obtained by multiple sensors is needed. However, the 

ypical trend is using single-modality based large public datasets 

n many vision and pattern recognition applications since major 

arge public datasets (such as ImageNet [8] , PASCAL VOC [9] or MS 

OCO [10] ) contain images from only the visible spectrum. That 

reates a problem to use such datasets in multi-sensor applica- 

ions since they provide only visible images. Alternative solutions 

o still using such existing public datasets in fusion algorithms in- 

lude collecting new datasets with multiple sensors or using do- 

ain transfer based techniques to obtain (generate) the missing 

https://doi.org/10.1016/j.patrec.2022.01.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.01.026&domain=pdf
mailto:sedat.ozer@ozyegin.edu.tr
https://doi.org/10.1016/j.patrec.2022.01.026
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Fig. 1. Overview of our proposed InfraGAN architecture. Both discriminators located on leftmost and rightmost side are identical in the training stage. The details of our 

generator are given in Fig. 2 and the details of our discriminator are given in Fig. 3 . 

Fig. 2. Our U-Net based generator architecture. In the figure, Xf is used to represent the total number of filters in each block where X is the total number of filters. 

Fig. 3. Our U-Net based discriminator architecture. (a) shows the discriminator architecture where the symbol 
⊕ 

means element-wise summation and the symbol O means 

concatenation. (b) shows the attention block architecture as used in the discriminator. 
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odalities. In this paper, we look for an efficient transfer technique 

o specifically obtain the IR equivalent of a given visible image. 

In this paper, we propose a generative adversarial networks 

GAN) based deep architecture to generate the IR equivalent im- 

ge of a given (input) visible image to help facilitate large and 

ingle modality based datasets in multi-sensor based applications. 

e call our solution InfraGAN . InfraGAN uses Structural Similar- 

ty Index Measure (SSIM) in its architecture to focus on learn- 

ng certain structural similarities between the IR and visible do- 

ains while pixel-based L1 norm enforces the architecture to look 

ike an IR image. The overview of our architecture is given in 

ig. 1 . We compare and evaluate our proposed architecture’s per- 

ormance on three different datasets: on one aerial dataset and 

n two ground taken datasets (having both visible and IR pairs). 

e use five metrics to compare our algorithm’s performance to 

wo other baseline networks. Our experimental and comparative 

esults show that our proposed architecture generates better IR 

quivalents when compared to both recently proposed Thermal- 

AN [11] and Pix2Pix [12] architectures in all of those five metrics. 

In this paper, our contributions include: 

1. introduction of a GAN-based domain-transfer technique to ob- 

tain the IR equivalent of a given visible image where both gen- 

erator and discriminator parts use an encoder-decoder architec- 

ture; 

2. use of an additional loss term based on SSIM, (see Eq. (8) ) for

improved results; 
3. experiments on three different large benchmark data sets. 

70 
. Related work 

Generating infrared images from a given visible image has 

ot been widely studied in the recent literature and there are 

nly a few published earlier works available (as in [11,13–15] ) 

eporting statistical and comparative results. There are also a 

elevant class of works that focus on fusing both IR and visible 

mages to obtain a single fused images as in [16] . However, our 

ine of work differs from such fusion-related literature as those 

orks take both IR and visible image pairs as input, while we 

ake only visible image as input and generate its IR equivalent 

s output. Most of those relevant literature to generate IR images 

ntroduces GAN based architectures as in [11,14,15] . Among those, 

hermalGAN [11] uses a U-Net based architecture in its generator 

nd uses a standard convolutional network (a basic discriminator) 

n its discriminator to classify the entire image being fake or real. 

n that work, the authors used ThermalWorld dataset [11] which 

onsists of 5098 of visible and thermal image pairs along with 

heir segmentation annotations for ten classes: truck, car, van, per- 

on, boat, bus, cat, building, tram, dog. In another work [14] , the 

uthors generated IR images to track objects. There, the authors 

tudied the performance of Cycle-GAN [17] and Pix2Pix [12] based 

etworks for generating IR images. They used both paired and 

npaired datasets in their experiments. In [15] , the authors 

ntroduced using multiple generators. Each generator would 

ocus on learning the properties of a different scene. Another Res- 

et [18] based classifier was used to choose which generators’ out- 
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Fig. 4. Comparison of two discriminator types: one-level (on the left) and two-level 

discriminators (on the right). One-level discriminator only classifies the entire im- 

age while the two-level one classifies the image and its pixels as being fake or real 

at the same time. 
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ut would be most suitable for the given input image. They used a 

ataset 1 containing 40479 image pairs. 

Our work differs from the above-mentioned works by introduc- 

ng a novel GAN based solution where our discriminator uses an 

ncoder-decoder based architecture and our generator uses an ad- 

itional loss term based on SSIM in that architecture. Furthermore, 

hile there are not many works in the literature presenting statis- 

ical results on large datasets, we utilize three different datasets in 

ur experiments to compare our proposed solution to two recently 

roposed GAN-based architectures from the literature (Pix2Pix and 

hermalGAN), in addition to comparing our results to simple U-Net 

rchitecture. 

The main differences of our network from the most relevant lit- 

rature include: (i) the use of pixel-based loss using SSIM in the 

oss function and (ii) the inclusion of a decoder part in the dis- 

riminator architecture using residual blocks for the generation of 

R images. 

. Our proposed architecture: InfraGAN 

GANs basically consist of a generator and a discriminator net- 

ork where each of those networks try to win over the other net- 

ork in an adversarial manner [19] . The goal of the discriminator 

s to determine whether the input image is real or fake by discrim- 

nating the output of the generator from the real ones, and the goal 

f the generator is to produce fake images imitating the real ones 

o that it can fool the discriminator. 

Our network uses two distinct U-Net based architectures. The 

rst one is used in our generator, inspired from [11] , (see Fig. 2 )

nd the second one is used in our discriminator (see Fig. 3 ) which

s similar to the U-Net architecture in [20] . In both figures, we use

lock structures in encoder and decoder sides of the networks and 

ach of those blocks are color coded based on their type. In con- 

rast to the generator network, discriminator’s upsampling layer is 

omposed of bi-linear interpolation with scale rate 2 as shown in 

ig. 3 . Furthermore, its down sampling layer is made up of average 

ooling with stride 2 to downscale the input into 1/2 resolution. 

n the figures, s is used for the stride value, f for the number of 

sed filters, p for the padding value, 1 × 1 , 2 × 2 , 3 × 3 and 4 × 4

re the kernel sizes. 

Generator Architecture: Our generator downscales images by 

sing 2D convolutional layers with stride 2 and uses deconvolu- 

ional layers without skip connections (instead of using interpola- 

ion). These layers manage to increase quality of IR images in gen- 

rator block thanks to learned parameters. On the other hand, the 

nput image is normalized between 1 and -1 in our network and 

herefore, the generator uses tangent hyperbolic activation function 

t the end to generate pixel values within the same input range. 

Discriminator Architecture: In general, the discriminator archi- 

ectures (based on the output format) can be classified under two 

ain types: basic discriminators that classify only the entire input 

mage being fake or real, and pixel-based discriminators that can 

lassify the entire (input) image being fake or real as well as its 

ndividual pixels being fake or real. See Fig. 4 for illustrative com- 

arisons of those two types. Recent literature in [20] reports that 

tilizing a U-Net architecture in discriminator (by classifying each 

ixel being fake or real) would improve the performance of over- 

ll GAN architecture. Inspired from that work, we use an architec- 

ure allowing us to classify each pixel separately in our discrimi- 

ator to generate IR images. In our discriminator, we used bilin- 

ar interpolation for upsampling stages and maxpooling layer for 

ownsampling stages to limit the number of learnable parameters, 

ince, using upsampling and maxpooling functions reduce the re- 
1 https://www.kaggle.com/c/planet- understanding- the- amazon- from- space . 

(

l

r

71 
uired memory consumption when compared to the convolutional 

nd deconvolutional layers (deconv with scale rate 2 and conv2d 

ith stride 2). 1 neuron FCN is used as a normalization layer to 

imit the output values being between 0 and 1. Furthermore, a sin- 

le attention block is used (see Fig. 3 for the details of the atten- 

ion block). 

A residual block is a collection of multiple layers with skip con- 

ection(s). In our discriminator, we utilize two different residual 

lock types. The first residual block type is used to downscale its 

nput (green boxes in Fig. 3 ), while the second type is used to up-

cale its input (the red boxes in Fig. 3 ). Both residual blocks in-

lude, 2D convolutional layers with 3 × 3 , 1 × 1 kernel size, and 

ame padding. The red block upscales its input via interpolation 

efore applying convolutional layers. The green block down-scales 

ts input via average pooling after applying convolutional layers. At 

he end, both blocks perform channel-wise summation on two par- 

llel branches and pass the output to next block. Next we describe 

he used loss functions. 

Discriminator Loss: Our discriminator uses an encoder-decoder 

rchitecture and contains two loss terms as given in Eq. (1) . One 

f those terms focuses on the entire image being fake or real (see 

q. (2) ), and the other one focuses on each pixel being fake or real

see Eq. (3) ). 

oss D U = Loss D U enc 
+ Loss D U 

dec 
(1) 

here Loss 
D U enc 

is the loss obtained at the end of the encoder for 

mage based loss, and Loss 
D U 

dec 
is the loss at the end of the decoder 

rchitecture for pixel based loss. Their definitions are given below: 

oss D U enc 
= − E x,y [ log D 

U 
enc (X,Y ) ] − E x [ log (1 − D 

U 
enc (X, G (X ))) ] (2) 

oss D U 
dec 

= −E x,y 

[ ∑ 

i, j 

log [ D 

U 
dec (X, Y )] i, j 

] 

− E x 

[ ∑ 

i, j 

log (1 − [ D 

U 
dec (X, G (X ))] i, j ) 

] 

(3) 

here X is the input image in visible domain, Y the ground truth 

R image, E(. ) refers to the expected value, G (X ) the generator’s 

R output, D (X, Y ) and D (X, G (Y )) are the binary outputs of the

iscriminator, (i, j) refers to a pixel’s coordinate in both images 

where both input and output has the same dimensions). The dis- 

riminator’s decoder output yields probability of each pixel being 

eal or fake separately. 

Generator Loss: Our generator uses three different terms in its 

oss ( Loss G ). The first term is the standard conditional GAN loss 

 Loss cGAN ). Additionally, we use two more terms: structural simi- 

arity index (SSIM) based loss ( Loss SSIM 

) and L1 loss ( Loss L 1 ). The 

eason for us to add the additional Loss is to ensure that the 
SSIM 

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
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enerated output will look similar to the given input image struc- 

urally. 

oss G = Loss cGAN + λ1 ∗ Loss L 1 + λ2 ∗ Loss SSIM 

(4) 

here λ1 and λ2 are the hyperparameters for loss function of gen- 

rator network, and each used term is defined below. For a single 

mage, the Loss L 1 is defined as: 

oss L 1 = 

1 

N 

∑ 

i, j 

| G (X ) i, j − Y i, j | (5) 

here G (X ) i, j is the pixel value of the generated image at 

( i, j) and N is the total number of pixels in the image. Y i, j is

he pixel value of ground truth (real) IR image at ( i, j). L 1 is the

bsolute value of the difference between two pixels. 

oss cGAN = −E x 

[ ∑ 

i, j 

log ([ D 

U 
dec (X, G (X ))] i, j ) 

] 

− E x [ log (D 

U 
enc (X, G (X )))] (6) 

oss SSIM 

= 

1 

m 

m −1 ∑ 

i =0 

(1 − SSIM(G (X i ) , Y i )) (7) 

here m is the batch-size. The Structural Similarity Index (SSIM) 

s a metric measuring the similarity between two images: Y and 

 (X ) . SSIM is defined as follows [21] : 

SIM(Y ′ , Y ) = 

2 μy ′ μy + C 1 

μ2 
y ′ + μ2 

y + C 1 
. 

2 σy ′ σy + C 2 

σ 2 
y ′ + σ 2 

y + C 2 
. 
σy ′ y + C 3 

σy ′ σy + C 3 

= 

2 μy ′ μy + C 1 

μ2 
y ′ + μ2 

y + C 1 
. 

σy ′ y + C 3 

σ 2 
y ′ + σ 2 

y + C 2 
(8) 

here C 1 , C 2 and C 3 are the parameters to ensure the stability of

ivisions [22] . We set C 3 = C 2 / 2 while C 1 = (0 . 01 ∗ L ) 2 and C 2 =
0 . 03 ∗ L ) 2 where L is the range of the image pixels. As described

bove, Y ′ is the generated output (IR) image G (X ) while Y is the 

round truth (IR image). σy ′ and σy are modified standard devia- 

ions for Y ′ and Y ; μy ′ and μy are the modified mean values of 

heir respective images. Finally, σy ′ y refers to modified co-variance. 

urther details on computing SSIM can be found in [22] . 

By using Eq. (6) , the objective function of conditional GAN loss 

cGAN) forces D 

U (X, G (X )) to maximize in order to deceive the 

iscriminator. That means: the higher realness score we obtained 

rom D 

U (X, G (X )) , the more realistic image the generator can pro-

uce. The generator’s loss is computed as if the generated images 

re classified as real by the discriminator. 

. Experiments 

In this section, we first describe the used metrics and datasets 

nd then present our experimental results. All our experiments 

ere running on Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz with 

 Titan RTX (24GB) GPUs. 

.1. Datasets and used metrics 

We utilized three different datasets containing both IR and vis- 

ble image pairs: VEDAI [23] , FLIR 

2 and KAIST [24] datasets. VEDAI 

23] is a dataset for vehicle detection in aerial imagery. It contains 

268 image pairs (visible and IR images). We use 1068 pairs of 

hose for training and use the remaining 200 pairs for testing. FLIR 

s another dataset containing visible-thermal image pairs. We use 

2795 image pairs for training and 839 pairs for testing in FLIR. 
2 FLIR dataset, https://www.flir.com/oem/adas/adas- dataset- form/ . P

72 
AIST [24] is another dataset that provides 11 video sequences in 

ifferent circumstances such as in night mode and in sunny mode. 

n our experiments, we use 12538 image pairs for training and 

252 image pairs for testing from the KAIST dataset. While in both 

EDAI and KAIST datasets, the visible image comes in RGB format, 

n FLIR dataset the visible image comes in grayscale (single chan- 

el) format. In all of our networks, we use Adam optimization with 

earning rate of generator being 2 . 10 −4 and learning rate of dis- 

riminator being 2 . 10 −6 . Batch-size is set to 8. All networks are

rained from scratch with random initialization. We set λ1 = 100 

nd λ2 = 100 in our experiments. 

We evaluate the performance of each network over five differ- 

nt metrics including Structural Similarity Index Measure (SSIM, 

ee Eq. (8) ), Mean Structural Similarity Index Measure (MSSIM), 

earned Perceptual Image Patch Similarity (LPIPS), L1 (pixel by 

ixel, see Eq. (5) ) norm and Peak Signal-to-Noise Ratio (PSNR). 

hose metrics are briefly explained below. 

SSIM(Y ′ , Y ) = 

1 

K 

K ∑ 

y ′ 
i 
,y i 

SSIM(y ′ i , y i ) (9) 

SSIM is the mean SSIM value over the downscaled versions of 

he images [22] where y ′ 
i 

and y i are downscaled versions of gener- 

ted ( Y ′ ) and real ( Y ) infrared images. K is the number of down-

caling factors (we used 2 1 , 2 2 , 2 3 , 2 4 , 2 5 values for K = 5 in this

ork). 

Learned Perceptual Image Patch Similarity (LPIPS) [25] mea- 

ures the Euclidian distance between the feature vectors of both 

mages. To compute the metric, the comparative features are ob- 

ained from a CNN-based backbone pretrained on ImageNet [8] (in 

ur experiments we used AlexNet [26] ). The work in [25] reported 

hat LPIPS manages to favorably evaluate closeness rate between 

arget patch and reference patch in terms of human judgment 

ompared to other traditional metrics such as SSIM and PSNR by 

sing deep networks and their deep features. 

P IP S(Y ′ , Y ) = 

L ∑ 

l 

1 

H l W l 

∑ 

h l ,w l 

[ f l (Y 
′ ) h l ,w l 

− f l (Y ) h l ,w l 
] 2 ∗ ω l (10)

here f l (Y 
′ ) , f l (Y ) ∈ R 

H l xW l xC l denote the normalized features de-

ived from the lth layer of the pre-trained CNN backbone. C l is the 

hannel size for lth layer. H, W are the height and width, respec- 

ively. 1 
H l W l 

∑ 

h l ,w l 
corresponds to the spatial average function as 

efined in [25] . h l , w l show pixel’s coordinate for lth layer. More- 

ver, ω l ∈ R 

C l x 1 refers to the trained weights of LPIPS and its main

urpose is reducing C l value to one, before computing spatial av- 

rage. The multiplication operator ( ∗) is used as linear matrix mul- 

iplication. Finally, L is the number of used layers for evaluation. 

ext metric: Peak Signal-to-Noise Ratio (PSNR) is defined as fol- 

ows: 

 SNR (Y ′ , Y ) = 10 log 
MAX VALUE 

MSE(Y ′ , Y ) , 
where MSE is defined as: 

MSE(Y ′ , Y ) = 

1 

HW 

H ∑ 

i =0 

W ∑ 

j=0 

(Y ′ (i, j) − Y (i, j)) 2 (11) 

AXVALUE is set to 1 (normalized maximum), as the ground truth 

nd the pixel values in the generated image are normalized be- 

ween -1 and 1. PSNR indicates the quality of the reconstruction 

f the IR images from the visible images [27] . H, W are the height

nd width of the image, respectively. 

.2. Results 

In this section, we compare our InfraGAN’s performance to 

ix2Pix [12] using residual blocks in its generator, to UNet, and 

https://www.flir.com/oem/adas/adas-dataset-form/
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Table 1 

Comparison of different algorithms on three different datasets. Best result is shown in bold 

for each metric over all classes for each dataset. 

VEDAI dataset [23] SSIM MSSIM LPIPS L1 PSNR 

Pix2Pix [12] 0.72 0.66 0.066 0.175 19.84 

ThermalGAN [11] 0.80 0.83 0.019 0.068 27.44 

U-Net 0.89 0.87 0.013 0.066 27.96 

InfraGANv1 0.86 0.87 0.013 0.058 28.74 

InfraGANv2 0.79 0.84 0.030 0.065 27.64 

InfraGANv3 0.88 0.90 0.011 0.055 29.24 

InfraGANv4 0.88 0.90 0.011 0.055 29.26 

InfraGANv5 0.86 0.88 0.013 0.056 28.98 

InfraGANv6 0.88 0.90 0.011 0.056 29.21 

KAIST dataset [24] SSIM MSSIM LPIPS L1 PSNR 

Pix2Pix [12] 0.69 0.55 0.196 0.137 21.25 

ThermalGAN [11] 0.66 0.51 0.242 0.165 19.74 

U-Net 0.78 0.64 0.172 0.137 21.75 

InfraGANv2 0.76 0.67 0.167 0.123 22.81 

InfraGANv3 0.76 0.68 0.157 0.123 22.89 

InfraGANv5 0.77 0.68 0.165 0.122 22.87 

InfraGANv6 0.76 0.67 0.159 0.121 22.97 

FLIR dataset SSIM MSSIM LPIPS L1 PSNR 

Pix2Pix [12] 0.13 0.38 0.203 0.228 16.51 

ThermalGAN [11] 0.17 0.43 0.192 0.209 17.30 

U-Net 0.31 0.54 0.188 0.169 19.29 

InfraGANv1 0.24 0.54 0.164 0.171 19.23 

InfraGANv2 0.25 0.53 0.173 0.171 19.10 

InfraGANv3 0.26 0.54 0.159 0.169 19.24 

InfraGANv4 0.26 0.54 0.158 0.170 19.21 

InfraGANv5 0.26 0.54 0.175 0.168 19.28 
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o the ThermalGAN implementation 

3 from [11] . In ThermalGAN, 

here is an extra input which is called as temperature vector T, 

see [11] for the definition of vector T), which helps network to 

earn thermal color spectrum better. However, to have fair com- 

arison in our algorithms (since none of the other algorithms use 

dditional input vector), and since we do not have ground truth 

 vectors in our used datasets, we used the version that does not 

onsider the input vector T for ThermalGAN in our experiments. 

Table 1 compares overall performance of those four different ar- 

hitectures (ThermalGAN, Pix2Pix, UNet and InfraGAN) in five dif- 

erent metrics over three different datasets. Furthermore, we also 

nclude different versions of InfraGAN in the table (see Table 4 for 

he difference between different InfraGAN versions). As shown in 

able 1 , the VEDAI and KAIST results for each algorithm are higher 

n average than the results obtained for the FLIR dataset. We think 

hat is mainly because of the format difference of the datasets 

ince the FLIR dataset is the only dataset we used where the vis- 

ble image was present in grayscale, while the other two datasets 

rovide the visible image in the RGB format. Consequently, we be- 

ieve that all the networks could not use the color information 

n FLIR experiments yielding lower results on average when com- 

ared to the other two datasets. Overall, in all five metrics, our 

nfraGAN architecture yielded the best results on both KAIST and 

EDAI datasets when compared to the other GAN-based networks. 

hile simple U-Net architecture (that is trained without using a 

AN loss) yielded slightly higher results on SSIM, it yielded lower 

esults on the other metrics on average. The table also demon- 

trates that using also the SSIM loss in our network helped gaining 

igher performance (compare InfraGANv2 results to InfraGANv5 

esults). 

Table 2 shows individual class performances of each algorithm 

n the KAIST dataset. The test dataset in KAIST has three classes: 
3 https://github.com/vlkniaz/ThermalGAN . 

b

s

t
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yclist, People and Person. Each entry in the table shows the five 

etric in the format of: SSIM / MSSIM / LPIPS / L1 / PSNR for each

lass. 

Table 3 shows individual class performances of each algorithm 

n the VEDAI dataset. The test dataset in VEDAI has eight classes: 

ar, truck, pickup, tractor, camping car, boat, van and other. Each 

ntry in the table shows the five metric in the format of: SSIM / 

SSIM / LPIPS / L1 / PSNR for each class. 

Table 4 summarizes our ablation study on computation time 

nd on the use of activation function. The term FPS means frame 

er second and computed as the time required by algorithm to test 

 given image (where image resolution is 512 × 512 ). Sec/Epoch 

eans the training time (in seconds) per epoch on KAIST dataset. 

ince we used different versions of our InfraGAN in the table 

here we changed the hyperparameters including the used acti- 

ation function and the used loss functions, we named each used 

ersion seperately. In total, we listed six different versions of Infra- 

AN in the table. Additionally, Table 5 shows comparative results 

f using L1 vs. using Mean Square Error (MSE) in InfraGANv2 on 

wo different datasets. 

Figure 5 compares qualitative results obtained from three differ- 

nt algorithms, namely Pix2Pix, ThermalGAN and InfraGAN (ours) 

or selected (sample) two pairs from each dataset. In the figure, 

he first two rows show the results of each compared algorithm in 

his paper for the image pairs sampled from VEDAI, the third and 

ourth rows show results for the sample image pairs from KAIST 

nd the last two rows show the results for the sample image pairs 

rom FLIR datasets, respectively. Some of our results yield checker- 

oard artifact and we think one potential reason might be due to 

he use of trainable deconvolutional layers that are used instead of 

pscaling layers. 

Figure 6 qualitatively compares the results of UNet to GAN- 

ased networks on three sample images from KAIST. As it can be 

een in the figure, UNet results are more blurry when compared to 

he results of GAN-based networks. 

https://github.com/vlkniaz/ThermalGAN
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Fig. 5. Comparative results of multiple algorithms on sample image pairs from three datasets (the first two rows are from VEDAI, the third and fourth rows are from KAIST, 

the last two rows are from FLIR). The first two columns are the real images (visible and IR). The 3rd through 6th column images are the results from Pix2Pix, ThermalGAN, 

InfraGAN without SSIM loss and InfraGAN with SSIM loss, respectively. 

Fig. 6. Comparative results between simple U-Net generator and other GANs to show the difference of using GAN loss. These qualitative results show that using GAN 

architecture can help improving the generated image quality. In the figure, the first two columns show the original images, from third column to sixth column shows 

GAN-based networks’ results and the last column shows U-Net results on three samples. 
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Table 2 

Comparison of four different algorithms on the KAIST dataset for each class. Each entry shows five different metrics in the 

order of: SSIM, MSSIM, LPIPS, L1 and PSNR. Best result is shown in bold for each metric. 

KAIST dataset [23] Cyclist People Person 

Pix2Pix 0.70/0.54/0.196/0.155/20.63 0.69/0.55/0.196/0.144/20.96 0.68/0.54/0.199/0.143/21.00 

ThermalGAN 0.66/0.51/0.243/0.176/19.33 0.65/0.52/0.237/0.174/19.43 0.65/0.52/0.235/0.168/19.66 

INFRAGAN w/o SSIM 0.78/0.69/0.154/0.125/23.06 0.76/0.68/0.163/0.131/ 22.44 0.75/0.66/0.173/0.131/22.23 

INFRAGAN 0.78 / 0.70 / 0.147 / 0.118 / 23.29 0.76 / 0.68 / 0.161 / 0.130 /22.30 0.75 / 0.66 / 0.170 / 0.128 / 22.40 

Table 3 

Comparison of four different algorithms on the VEDAI dataset for each class. Each entry shows five different metrics in the order of: SSIM, MSSIM, LPIPS, L1 and PSNR. 

Best result is shown in bold for each metric. 

VEDAI 

dataset [23] Car Truck Pickup Tractor Camping Car Boat Van Other 

Pix2Pix [12] : 0.72/0.67/0.065 

/0.161/20.39 

0.74/0.70/0.056 

/0.173/20.09 

0.73/0.69/0.061 

/0.169/20.12 

0.71/0.67/0.065 

/0.162/20.23 

0.72/0.66/0.060 

/0.166/20.10 

0.75/0.79/0.050 

/0.109/23.45 

0.68/0.60/0.069 

/0.167/19.64 

0.73/0.65/0.075 

/0.266/17.05 

ThermalGAN 

[11] : 

0.81/0.85/0.019 

/0.064/27.98 

0.82/0.86/0.017 

/0.065/27.56 

0.82/0.84/0.019 

/0.067/27.51 

0.80/0.83/0.020 

/0.70/27.21 

0.80/0.84/0.018 

/0.065/27.81 

0.82/0.86/0.019 

/0.063/27.69 

0.77/0.78/0.030 

/0.104/23.76 

0.84/0.85/0.015 

/0.070/27.88 

InfraGAN w/o 

SSIM: 

0.79/0.85/0.029 

/0.061/28.11 

0.81/0.87/0.026 

/0.061/27.90 

0.80/0.85/0.029 

/0.066/27.51 

0.78/0.84/0.029 

/0.064/27.51 

0.79/0.85/0.029 

/0.064/27.77 

0.80/0.86/0.030 

/0.067/26.64 

0.76/0.81/0.039 

/0.094/24.27 

0.82/0.86/0.022 

/0.055/29.08 

InfraGAN: 0.86 / 0.89 / 0.013 

/ 0.053 / 29.43 

0.87 / 0.90 / 0.013 

/ 0.057 / 28.72 

0.86 / 0.89 / 0.014 

/ 0.057 / 28.87 

0.85 / 0.88 / 0.014 

/ 0.056 / 28.97 

0.86 / 0.89 / 0.013 

/ 0.054 / 29.49 

0.86 / 0.86 / 0.018 

/ 0.063 / 27.53 

0.82 / 0.83 / 0.024 

/ 0.081 / 25.21 

0.88 / 0.90 / 0.011 

/ 0.052 / 29.85 

Table 4 

Network definitions based on their configurations, where Łrefers to the used loss function and A.F. means activation function. Encoder and 

Decoder is listed for the generator. This table also compares run times of different networks on KAIST dataset. 

Algorithms ŁcGAN ŁL 1 ŁMSE ŁSSIM A.F. in Encoder A.F. in Decoder A.F. in Discriminator Sec/Epoch FPS 

ThermalGAN [11] � � LeakyReLU ReLU ReLU 444 sec 328.06 

UNet � � LeakyReLU ReLU ReLU 936 sec 341.36 

Pix2Pix [12] � � ReLU ReLU ReLU 1104 sec 264.95 

INFRAGANv1 � � LeakyReLU ReLU ReLU 2148 sec 340.37 

INFRAGANv2 � � LeakyReLU ReLU ReLU 2172 sec 342.12 

INFRAGANv3 � � LeakyReLU ReLU LeakyReLU 2220 sec 340.76 

INFRAGANv4 � � LeakyReLU LeakyReLU ReLU 2244 sec 341.56 

INFRAGANv5 � � � LeakyReLU ReLU ReLU 2256 sec 342.29 

INFRAGANv6 � � LeakyReLU LeakyReLU LeakyReLU 2252 sec 341.56 

Table 5 

Comparison of using L1 (InfraGANv2) and using Mean Squared 

Error, MSE, (InfraGANv1) for pixel by pixel loss on VEDAI and 

FLIR. 

VEDAI [23] SSIM MSSIM LPIPS L1 PSNR 

L1 0.79 0.84 0.030 0.065 27.64 

MSE 0.86 0.87 0.013 0.058 28.74 

FLIR dataset SSIM MSSIM LPIPS L1 PSNR 

L1 0.25 0.53 0.173 0.171 19.10 

MSE 0.24 0.54 0.164 0.171 19.23 
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. Conclusion 

As the use of IR sensors increases, the demand on using algo- 

ithms that can run on IR images also increases. The IR images 

omplement RGB images from the thermal spectrum and help al- 

orithms to detect many objects easier. However, the lack of big 

nd public datasets containing IR images, limits what can be ob- 

ained from the existing deep object detection algorithms (such 

s SyNet [28] or YOLO [29] ). In this work, we tackle that prob-

em where algorithms can learn the relation between the visible 

nd IR spectrum so that we can artificially generate the IR equiv- 

lent of any given visible image. For that purpose, as being the 

rst step, we introduce InfraGAN architecture and study the per- 

ormance of different InfraGAN versions in this paper. While the 

iterature has some preliminary works reporting qualitative results 

see for example [17] ), our work is one of the early works that

resents a comprehensive analysis using three different bench- 

arking data sets and five different metrics. Our experimental re- 

ults (see Table 1 ) show that our proposed algorithm yields the 
75 
est overall performance on all five metrics for both VEDAI and 

AIST datasets. Additionally, Fig. 5 demonstrates that our gener- 

ted IR images look similar to the ground truth IR images. That 

akes our approach of using GAN-based networks utilizing U-Nets 

ith two level discriminator a good alternative solution to obtain 

he IR equivalent of a given visible image. Since we build addi- 

ional layers as decoder on top of the existing encoder stage, our 

mplementation takes slightly longer time during the training (see 

able 4 ) when compared to ThermalGAN and Pix2Pix architectures. 

igure 6 compares U-Net architecture (as used in our implemen- 

ation, the U-Net architecture is shown in Fig. 2 ) to GAN-based 

etworks. As shown in the figure, the U-Net architecture (which 

s trained by using both SSIM and L1 losses) yields more blurry 

utputs than GAN based networks, even if it yields slightly higher 

SIM results in Table 1 . 
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